
AD-A213 595

DT13C
V-' . r- -2T_

OCT 2 41989 ADS - A FORTRAN PROGRAM

FOR AUTOMATED DESIGN SYNTHESIS

VERSION 3.00

March, 1988

by

G. N. Vanderplaats

A

Copyright (c), 1987 by

ENGINEERING DESIGN OPTIMIZATION, INC.

All Rights Reserved Worldwide

tc rr F .7 &o

UL L- 2 T F D P2 7 , " 3 7 -,1P /

ENGINEERING DESIGN OPTIMIZATION, Inc.
1275 Camino Rio Verde, Santa Barbara, CA 93111 805/967-0058 FAX 805/967-5844

I 9 / 2V 0f I



I

CONTENTS

1, R 0 [2 R D UC'1'IO NI . r g r aCTi Enhancements Since Version 1.00

.v ROGRAMt~ OPTIONS
2.1 Strategy

2 Optimizer
2.3 One-Dimensional Search
2.4 Alovable Combinations of Algorith-nc

I : ,4r ~o, -LO -u1

'9 USER INSTRUCTIONS
4.1 Calling Statement
4.2 Definitions of Parameters the Calling Statement
4.3 Over-Riding ADS Default Parameters
4.4 User-Supplied Gradients
4.5 Restarting ADS
4.6 Choosing an Algorithm

5.0 EXAMPLES
5.1 All Default Parameters
5.2 Initial Parameters are Modified
5.3 Gradients are Supplied by the User

6.0 MAIN PROGRAM FOR SIMPLIFIED USAGE OF ADS 33

7.0 REFERENCES 34

APPENDIX A: QUICK REFERENCE TO ADS OPTIONS 36

APPENDIX B: USEFUL INFORMATION STORED IN ARRAYS WK AND IVK 37

APPENDIX C: SUBROUTINES NEEDED FOR A SPECIFIED COMBINATION OF
ISTRAT, IOPT AND IONED 39

APPENDIX D: ADS SYSTEM SUBROUTINES 41

APPENDIX E: IN CASE OF DIFFICULTY 45

APPENDIX F: ADS INTERNAL PARAMETER DESCRIPTIONS 47

INTIS

By .. . .

iDist



I

U FIGURES

1 Simplified Program Usage; All Default Parameters and Finite
Difference: Gradients

2 Program Flow Logic; Over-ride Default Parameters, Finite

Difference Gradients

3 Program Flow Logic; Over-ride Default Parameters and Provide
Gradients

4 Restarting ADS

i . Thre- Bar truss

6 Example 1; All Default Parameters

7 Example 1; Output

8 Example 2; Modify Default Parameters

9 Example 2; Output

I0 Example 3; Gradients Supplied by the User 28

11 Example 3; Output

I 12 Program for Simplified Usage of ADS

i TABLES

1 STRATEGY OPTIONS

* 2 OPTIMIZER OPTIONS

3 ONE-DIMENSIONAL SEARCH OPTIONS

4 ALLOWABLE COMBINATIONS OF ALGORITHMS 6

5 PARAMETERS IN THE ADS CALLING STATEMENT 11

6 REAL PARAMETERS STORED IN ARRAY WK 15

7 DEFINITIONS OF REAL PARAMETERS STORED IN ARRAY WK 16

8 INTEGER PARAMETERS STORED IN ARRAY IVK 17

3 9 DEFINITIONS OF INTEGER PARAMETERS STORED IN ARRAY IWK 18

I
iiI



I
1.0 INTRODUCTION

ADS is a general purpose numerical optimization program containing a vide
variev [i algorithms. The problem solved is:

ni iie F(X)

S'utbject o;

Gj(X) .LE. 0 j=l,m

Hk(X) .EQ. 0 k=l,L

XL, .LE. X. .LE. XU. i=ln
1 1 1.

The solution of this general problem is separated into thtc ba:--c _-:is:

I I. STRATEGY - For example, Sequential Unconstrained Minimization or Sequential
i near Programming. The purpose of a strategy is to convert tne otiginal

constrained problem into a sequence of approximate problems using various
techniques. A strategy is not used for unconstrained problems. in that
case, the parameter, ISTRAT, is set to zero.

I 2. OPTIMIZER - For example, Variable Metric methods for unconstrained
minimization or the Method of Feasible Directions for constrained
minimization. The optimizer performs the actual function minimization of

either the original problem (if ISTRAT=0) or the approximate problem (if
ISTRAT is greater than zero).

3. ONE-DIMENSIONAL SEARCH - For example, Golden Section or Polynomial
Interpolation. The one-dimensional search is called by the optimizer and,
in some cases, the strategy. By choosing - Strategy, Optimizer and One-
Dimensional Search, the user is given coni.-ble flexibility in creating

an optimization program which works well fo given class of design
problems.

Additionally, we may consider another component to be problem formulation.
It is assumed that the engineer makes every effort to formulate the problem in a
form amenable to efficient solution by numerical optimization. This aspect is
perhaps the most important ingredient to the efficient use of the ADS program

:c:' 1uition of problems of practical significance.
This manual describes the use of the ADS program and the available program

options. Section 1.1 describes the enhancements and modifications to the ADS
program subsequent to Version 1.00 (ref. 1). Section / identifies the available
optimization strategies, optimizers and one-dimensional search algorithms.
Section 3 defines the program organization, and Section 4 gives user
instrlctions. -cti3n ; prpccntsv c'- ple exmples to il the user in
becomli7 familiar with the ADS program. Section 6 gives a simple main program
that is useful for general design applications.

I 1I
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1.1 Enhancements and Modifications Since Version 1.00 I

Since the release of Version 1.00 in May of 1984, numerous modifications
and enhancements have been made to the program. Many of these are minor and are
transparent to the casual user. These include various formatting changes,
internal logic enhancements to improve program flow, and a fc., actual bugs in
the FORTRAN. Because of the robustness of the basic program, where bugs exist,
their correction often is detected only in special test cases. Examples of this

are correction of an error in using the absolute convergence criteria and
correction of polynomial one-dimensional search when a constraint is being

followed. Other enhancements include checking to insure the initial design does

not violate any side constraints, and checking to be sure the combinations of

strategy, optimizer and one-dimeisional search are valid.
Enhancements to the program, beyond the original capability, include

addition of equality constraint capability throughout the program and addition
of a new strategy.

Equality constraints are now available in all options of the prGt,

whereas in Version 1.00 they were only available when using penalty function
strategies. Specifically, equality constraints have been added to optimizers 4

and 5. Here, two approaches were investigated. The first was to formally treat
them in a mathematical sense. This requires considerable program logic and I
usually insures rather precise following of the constraints, but at some

efficiency cost. The second approach, and that used here, was to treat equality
constraints via a linear penalty function and an equivalent inequality
constraint. The basic concept is to first change the sign on the constraint, if
necessary, so that the scalar product of the gradient of the constraint with the
gradient of the objective function is negative. The constraint is then
converted to a non-positive inequality constraint and a linear penalty is added
to the objective. The penalty, together with the conversion to an inequality
constraint have the effect of driving the original equality constraint to zero

at the optimum, but without demanding precise accuracy, with its corresponding
inefficiency. This is in keeping with the general philosophy of ADS of finding
a near optimum design quickly.

A new strategy (ISTRAT=9), called Sequential Convex Programming, developed
by Fleury and Briabant (ref. 2), has been added to ADS. The basic concept of I
this strategy is that a linear approximation to the objective and constraint

functions is first created, just as in sequential linear programming. However,
during the approximate optimization sub-problem, either direct or reciprocal
variables are used, depending on the sign of the corresponding components of the

gradients. This creates a conservative convex approximation to the optimization
problem in comparison to a simple linearization. In reference 2, the method was

applied to structural optimization problems in which all design variables were

positive. It was shown that move limits were not required during the

sub-problem and that the method converged quickly to the optimum. When

incorporating the algorithm into ADS, move limits were included, but they are I
iess stringent than for sequential linear programming. This is based on the

experience that the d'rign space can bczomp i11-cnitionpd in ';ric ine;dl

appilcations. Also, reciprocal variables are only used if the design variable I
is positive.

2 I
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In earlier versions of ADS, when scaling was perfoLmed, the scaled

constraints were printed. In this versio,, the constraints are unscaled prior
to printing. In the one-dimensional search, the variablls and function values
are now unscaled prior to printing. Also, in all prinring, a number, followed
b' a dtcimai are now used instead of the earlier LEx:: format, to improve

Perhaps The most significant program modification is in the scaling
algorithm itself. The original scaling algorithm appeared quite sophisticated
and, when it worked, it seemed very good. However, in those cases where it
produced poor scaling, the results were often disastrous. Unfortunately, it was
not possible to predict when it would or would not york. A particularly
disturbing feature was that, sometimes the scaled constraints were satisfied
within a small tolerance during optimization, but at the end when the unscaled
values were printed, they were greatly violated. This provided the important
information that the user had probably not carefully scaled the cons-traints to
begin with. However, this is not obvious to most users and so it often led to
practical difficulties when using ADS.

A completely new scaling algorithm has been used in Version 2.00 which, is
in many ways similar to the time honored normalization method used in the old
CONMIN program. However, in addition to normalizing the design varis ois, the
objective and constraints are also scaled. If the problem i:- nat 11 -; well
Sale d, the scale factor will be unity, but if the function and gradient
information suggests a better scaling, this will he attoTmpted. on1 test
problems, this has been found to be a significant improvement over te ,reious
scaling routine.

2.0 PROGRAM OPTIONS

In this section, the options available in the ADS program are identified.
At each of the three solution levels, several options are available to the user.

*2.1 Strategy

Table 1 lists the strategies available. The parameter ISTRAT :ill be sent
to the ADS program to identify the strategy the user wants. The ISTRA]'=: option
would indicate that control should transfer directly to the optimizer. Thiswould be the case, for example, when using the Method of Feasible Directions tc

solve constrained optimization problems because the optimizer works directl
with the constrained problem. On the other hand, if the constrain(
optimization problem is to be solved by creating a sequence of unconstrained
minimizations, with penalty functions to deal with constraints, one of the

*appropriate strategies would be used.

3



I

TABLE 1: STRATEGY OPfIONS i

ISTRAT STRATEGY TO BE USED n

0 None. Go directly to the optimizer.
Sequtetiial unconstrained minimization using the exterior penalty
function method (refs. 3, 4). I

2 Sequential unconstrained minimization using the linear extended interior
penalty function method (refs. 5-7).

3 Sequential unconstrained minimization using the quadratir extended

interior pcnalty function method (refs. 8, 9).
4 Sequential unconstrained minimization using the cubic extended interior

penalty function method (ref. 10).

5 Augmented Lagrange Multiplier method (refs. 11-15). I
6 Sequential Linear Programming (refs. 16, 17).
7 Method of Centers (method of inscribed hyperspheres), (ref. 18).

8 Sequential Quadratic Programming (refs. 13, 19, 20).

9 Sequential Convex Programming (ref. 2).

2.2 Optimizer i
Table 2 lists the optimizers available. TOPT is the parameter used to

indicate the optimizer desired. I
TABLE 2: OPTIMIZER OPTIONS

IOPT OPTIMIZER TO BE USED i

0 None. Go directly to the one-dimensional search. This option should be

used only for program development. I
1 Fletchec-Re4ves algorithm for unconstrained minimization (refs. 21).
2 Davidon-Fletcher-Powell (DFP) variable metric method for unconstrained

minimization (refs. 22, 23).

3 Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for
unconstrained minimization (refs. 24-27).

4 Method of Feasible Directions (MFD) for constrained minimization (refs.

28, 29). I
5 Modified Method of Feasible Directions for constrained minimization

(ref. 30).

In choosing the optimizer (as well as strategy and one-dimensional search)
it is assumed that the user is knowledgeable enough to choose an algorithm

consistent with the problem at hand. For example, a variable metric optimizer
would not be used to solve constrained problems unless a strategy is used to
create the equivalent unconstrained minimization task via some form of penalty

func t ion. i

4
I
I



I
2.3 One-Dimensional Search

Table 3 lists the one-dimensional search options available for
unconstrained and constrained problems. Here IONED identifies the algorithm to
be used.

TABLE 3: ONE-DIMENSIONAL SEARCH OPTIONS

IONED ONE-DIMENSIONAL SEARCH OPTION (refs. 3, 31, 32)

I Fnd the minimum of an unconstrained function using the Golden Section

-- T -hod.
2 Find the minimum of an unconstrained function using the Golden Section

7 ..method followed by polynomial interpolation.
3 Find the minimum of an unconstrained function by first finding bounds

and then using polynomial interpolation.
Find the minimum of an unconstrained function by polynomial
interpolation/extrapolation without first finding bounds on the

5 Find the minimum of an constrained function using the Golden Section
ne thod.IC Find the minimum of an constrained function using the Golden Section
aethod followed ay polynomial interpolation.

7 Find the minimum of an constrained function by first finding bounds and
-hen using polynomial interpolation.

a "ind the minimum of an constrained functien by polynomial
u,-rezpo!ation/extrapolation without first finding bounds on the3 SO lu t io1.

.Al ~~.'ae 1 ombinations of Algorithms

.o . com I, 7binations of strategy, optimizer and one-dimen-ional search are
:t, a 1 ;t. :o enample, constrained one-dimensional search is not meaningful
'hen minimizing unconstrained functions.

Table 4 identifies the combinations of algorithms which are available in
the ADS program. In this table, an X is used to denote an acceptable
co:binaion of strategy, optimizer and one-dimensional search. An e:.:ample is
show 'n by the heavy line on the table which indicates that constrained
optimization is to be performed by the Augmented Lagrange Multiplier Method
(ISTRAT=5), using the BFGS optimizer (IOPT=3) and polynomial interpolation with
bounds for the one-dimensional search (IONED=3). From the table, it is clear
that a large number of possible combinations of algorithms are available.

I
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TABLE 4: COMBINATIONS OF ALGORITHMS ALLOWED

OPTIMIZER
STRATEGY 1 2 3 4 5

0 X X X Y X

1 X X X 0 0
2 X X X 0 (11
3 X X X 0 0 i
4 X X X 0 0

FS x- x l 0 0
6 0 0 0 X X
7 0 0 0 X X
8 0 0 0 X X
9 0 0 0 X X

ONE-D SEARCH

I X X X 0 0
2 X X I 0 03 x x R] 0 0
4 X X X 0 0
5 0 0 0 X X I
6 0 0 0 X X
7 0 0 0 X X
8 0 0 0 X X

Appendix A contains an annotated version of Table 4 for convenient
reference once the user is familiar with ADS.

To conserve computer storage, it may be desirable to use only those
subroutines in the ADS system needed for a given combination of ISTRAT, IOPT and
IONED. Appendix C provides the information necessary for this. Appendix D
lists the ADS subroutines with a very brief description of each. I

In writing a program to call ADS, the user should be aware that subroutine
names should not be duplicated. This is seldom a problem with ADS because each

routine begins with the letters A-D-S, followed by a three digit number (except
the ADS routine itself, which has no trailing numbers. Thus, the user need only
be sure not to use subroutines with this numbering sequence.

3.0 PROGRAM FLOW LOGIC

ADS is called by a user-supplied calling program. ADS does not call any

user-supplied subroutines. Instead, ADS returns control to the calling program
when function or gradient information is needed. The required information is
evaluated and ADS is called again. This provides considerable flexibility n
program organization and restart capabilities.

The algorithms in ADS are called gradient based methods. That is they
require the calculation of the gradients of the objective and constraint

functions. In most applications, the user does not choose to calculate gradient

information (often it is not possible because of the implicit nature of the I
problem). Therefore, the default case is that ADS will calculate al' needed
gradient information using a first forward finite difference scheme. Tile
exception to this is that, if a variable is at its upper bound, a first

I
I



n i to dif fferecnce s tep is taken. This is because *he bounds oni the
deablos are consider-ed to be absolute and ADS will niot cn dra

desgn o!',side the specified bounds, even during gradient computations;. The
t- , to " i - i s thla t, i f the bounds are nearly equal, the tult I ig

1"1 -4finit1e di ff e-ence stLep may '.io late the lover bound .
ADS has numerous internal pairameterS that COnto thLTie Opt 1iZa t in

proc e"i Lhee 1ll ha ve (Ie f aulIt va lues t ha t ar-e, us 3ed uneu th userf
S 1,e, -- P-cnIange 1s them',.

T'. ba e udin f our pr inrc i pal modes,

11 CDn t rol par ame t ers and finite difference gr-adients.

. ;-rid de ef ault r pa rame ter s, uise fini te d if ference grad ients.

vut: (:am,,toi- and usr-supplied gradientLs.

* ~ dfaultpa: ametierLs an, siisple grac IentI

- mdeis the simplest "black box" approach. In the secnnd mode,
e, L ride the2 default parame ters to 'f ine tue the proiram-, fo r

e~K.. mde 3and 4,the user supplies llneeded gradient ino:mat ion)

L; 'lite 'ograrr flow diagram for the simiplest use of ADS. The user
... g the basic control parameters and arrays ( to be descri bed in
*negratdient computation parameter, IGRAD, is se. to ze o t

difernc gradients will be used. The informaticnfi it di f r n e g
NFis initialized to zero and ADS is called for optimization.

v.alues of the objective, OBJ , and cons traints , G( I) 1-1 NMI, are
0t 1c i retuLirned to the use r wi th INFO= I The funct ions ar-e thenI di ..:'DS is called again. When INFO=O is returned to the user, the
copte
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BEGIN I

DIMENSION ARRAYS

DEFINE BASIC VARIABLES

IGRAD = 0

INFO 0

CALL ADS (INFO .. ) .

NO 
YESU

EVALUATE EXIT

OBJECTIVE OPTIMIZATION IS
AND COMPLETE OR AN ERROR

CONSTRAINTS WAS DETECTED

Figure 1: Simplified Program Usage; All Default I
Parameters and Finite Difference Gradients

I
I
I

Figure 2 is the program flow diagram for the case where the user wishes to
over-ride one or more internal parameters, such as convergence criteria or
maximum number of iterations. Here, after initialization of basic parameters

and arrays, the information parameter, INFO, is set to -2. ADS is then called
to initialize all internal parameters to their default values and allocate

storage space for internal arrays. Control is then returned to the user, at
which poii;t these parameters, for example convergence criteria, can be
over-ridden. At this point, the information parameter, INFO, will have a value

of -1 and must not be changed. ADS is then called again and the optimization
proceeds. Section 4.3 provides a list of internal parameters which may be I
modified, along with their locations in the work arrays WK and IWK. A more
detailed explanation of these parameters is given in Appendix F.

8 I
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BEGIN

DIMENSION ARRAYS

DEFINE BASLC VARIABLES

IGRAD = 0

INFO ; -2
4,

CALI, ADS (INFO . )
4,

IF INFO=O, EXIT. ERROR WAS DETECTED

ELSE
OVER-RIDE DEFAULT PARAMETERS IN

APRAYS 'K AND IWK IF DESIRED

CALL ADS (INFO . .

' 0YES

EVALUATE EXIT
OBJECTIVE OPTIMIZATION

AND IS COMPLETE
CONSTRAINTS

Figure 2: Program Flow logic; Over-ride Default
Parameters, Finite Difference Gradients

e 3 is the flow diagram for the case where the user wishes to provide
gradiV:t ii:Kormation to ADS, rather than having ADS calculate this information
using fh~t difference methods. In Figure 3, it is also assumed that the user
ii d ome internal parameters, so the difference between Figures 2 and
Sis * ';PAD is now set to 1 and the user will now provide gradients during

if the user does not wish to over-ride any default parameters,
FK :.iaiized to zero and the first call to ADS is omitted (as in Figure

1). >e'-, when control is returned to the user, the information parameter will
have a -.-;IL: of I or 2 (if INFO=O, the optimization is complete, as before). If
INFO=I r' objective and constraint functions are evaluated and ADS is called
again, i-'-s as in Figure 2. If INFO=2, the gradient, DF, of the objective
f'in rio, w evaluated as well as the gradients of NGT constraints defined by
ec to r IC.

9
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BEGIN I

DIMENSION ARRAYS

DEFINE BASIC VARIABLES

IGRAD =1

INFO = -2

CALL ADS (INFO . . .)

IF INFO=O, EXIT. ERROR WAS DETECTED

ELSE

OVER-RIDE DEFAULT PARAMETERS IN
ARRAYS WK AND IWK IF DESIRED I

I I
PCALL ADS (INFO . . .)

YES EXIT

NFO = 0 OPTIMIZATION
IS COMPLETE

I
YES NO

EVALUATE EVALUATE

OBJECTIVE GRADIENT OF

AND OBJECTIVE I
CONSTRAINTS AND SPECIFIED

CONSTRAINTS

Fig:z ,.- Program Flow Logic; Over-ride Default I
Parameters and Provide Gradients

I
I
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I 4.0 USER INSTRUCTIONS

. '. of the A..D program is outlined. -he Fr"T ""N Ca '
. . ...:- :v: rsau then the aa tr eir n c, raL nzI,* >.. - -. '- j es parar cte:s h t ,e

. inoked 57 the fo'loving FORTRAN calling statement in e .,

I " ADS (INF0ISTRAT ,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,
VLB,VUB,OBJ ,G,IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK,IWK,NRIWK)

1.:.2 efinitions of Parameters in the ADS Calling Statement

TaIe 5 lists the parameters in the calling statement to ADS. Ther, arra.s
aIe .-e _ed, the required dimension size is given as the array argumen"

iAB ,:, 5: PARAMETERS IN THE ADS ARGUMENT LIST

P A-. * E'TR DEFINITION

7 .ion rara -.--t-, On the first cal ro ADS , I'F -D or 2 ;. lNFO0
.f the is er rnes no, "ish to oyez-ride internal pararnerors and
is u-sed if in ternal parameters are to be changed. then -ontrol

returns form ADS to the calling program, INFO will have a value of 0,
1, or 2. If INFO=O, the optimization is complete. If INFO1, the user

must evaluate the objective, OBJ, and constraint functions, G(1),
=I:,NCON, and call ADS again. If INF0=2, the user must evaluate the

gradient of the objective and the NGT constraints identified by the
vector IC, and call ADS again. If the gradient calculation control,
IGEAD=0, INFO=2 will never be returned from ADS, and all gradient
information is calculated by finite difference within ADS.

I:I7TPAT Optimization strategy to be used. Available options are identified in
Tabies I and 4.I'_?T Optimizer to be used. Available options are identified in Tables 2
and 4.

';D One-dimensional search algorithm to be used. Available options are
identified in Tables 3 and 4.

II
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TABLE 5 CONTINUED: PARAMETERS IN THE ADS ARGUMENT LIST

PARAMETER DEFINITION

IPRINT A four-digit print control. IPRINT=IJKL where I, J, K and L have the

following definitions:
I ADS system print control. I

0 - No print.

I - Print initial and final information.
2 - Same as I plus parameter values and storage needs.

3 - Same as 2 plus scaling information calculated by ADS.
J Strategy print control.

0 - No print.
I - Print initial and final optimization information. i
2 - Same as 1 plus OBJ and X at each iteration.

3 - Same as 2 plus G at each iteration.
4 - Same as 3 plus intermediate information. I
5 - Same as 4 plus gradients of constraints.

K Optimizer print control.

0 - No print.

1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and X at each iteration.
3 - Same as 2 plus constraints at each iteration.

4 - Same as 3 plus intermediate optimization and one-dimensional I
search information.

5 - Same as 4 plus gradients of constraints.
L One-Dimensional search print control, (debug only).

0 - No print.
1 - One-dimensional search debug information.
2 - More of the same.

Example: IPRINT=3120 corresponds to I=3, J=l, K=2 and L=O.
NOTE: IPRINT can be changed at any time control is returned to the

user.

IGRAD Gradient calculation control. If IGRAD=O is input to ADS, all

gradient computations are done within ADS by first forward finite
difference. If IGRAD=l, the user will supply gradient information as I
indicated by the value of INFO.

NDV Number of design variables contained in vector X. NDV is the same as n
in the mathematical problem statement. I

NCON Number of constraint values contained in array G. NCON is the same
m+L in the mathematical problem statement given in Section 1.0. NCON=O

is allowed.

X(NDV+l) Vector containing the design variables. On the first call to ADS,
this is the user's initial estimate to the design. On return from ADS,
this is the design for which function or gradient values are required.

On the final return from ADS (INFO=O is returned), the vector XI
contains the optimum design.

12
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I TABLE 5 CONTINUED: PARAMETERS IN THE ADS ARGUMENT LIST

PARAMETER DEFIN-ITION

VLB20''-) ,.:ray containing lover bounds on the design variables, X. If no
.:.er - 'ds are imposed on one or more of the design variables, the
_,:, ea ndng component(s) of Vh must be set to a large nega' :.'e

..- e . say -.,' - 5

SVUjB"... .:.: - in.10 1 upper hounds on the design varia 1es. X
:I"er- :ou Od t-,P osed on one or more of the design . 0 -
:o.-rnos~nding component(s) of VUB must be set to a large pos;:,-

:: e . say l.Oc-l5.
.alue of the objective function corresponding to the current :.1:ec or
:he design variables contained in X. On the first call to AD?. QBJ
need not be defined. ADS will return a value of INFO=l to indicate

'that the user must evaluate OBJ and call ADS again. Subsequently, an.
time a value of INFO=l is returned from ADS, the objective, OBJ, must
be evaluated for the current design and ADS must be called again. OBJ
has the same meaning as F(X) in the mathematical problem statement
given in Section 1.0.

G(,CON) Array containing NCON constraint values corresponding to the current
design contained in X. On the first call to PDS, the constraint values
need not be defined. On return from ADS, if INFO=l, the constraints
must be evaluated for the current X and ADS called again. If NCON=O,
array G should be dimensioned to unity, but no constraint values need
to be provided.

IDG(NCON) Array containing identifiers indicating the type of the constraints
contained in array G.

IDG(I) = -2 for linear equality constraint.
IDG(I) = -1 for nonlinear equality constraint.

IDG(I) = 0 or 1 for nonlinear inequality constraint.
IDG(I) = 2 for linear inequality constraint.

NGT Number of constraints for which gradients must be supplied. NCT is
defined by ADS as the minimum of NCOLA and NCON and is returned to the
user.

IC(NST) Array identifying constraints for which gradients are required. IC
is defined by ADS and returned to the user. If INFO=2 is returned to
the user, the gradient of the objective and the NGT constraints must be
evaluated and stored in arrays DF and A, respectively, and ADS must be

called again.
DF(NDV-l) Array containing the gradient of the objective corresponding to the

current X. Array DF must be defined by the user when INFO=2 is
returned from ADS. This will not occur if IGRAD=O, in which case array

DF is evaluated by ADS.

13
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TABLE 5 CONCLUDED: PARAMETERS IN THE ADS ARGUMENT LIST

PARAMETER DEFINITION

A(NRA.NCOLA) Array containing the gradients of the NGT constraints identified
by array IC. That is, column J of array A contains the gradient of
constraint number K, where K=IC(J). Array A must be defined by the
user when INFO=2 is returned from ADS and when NGT.GT.0. This will not
occur if IGRAD=O, in which case, array A is evaluated by ADS. NRA is

the dimensioned rows of array A. NCOLA is the dimensioned columns of
array A.

NRA Dimensioned rows of array A. NRA must be at least NDV+1.
NCOLA Dimensioned columns of array A. NCOLA should be at least the minimum

of NCON and 2*NDV. If enough storage is available, and if gradients
are easily provided or are calculated by finite difference, then
NCOLA=NCON+NDV is ideal.

WK(NRWK) User provided work array for real variables. Array WK is used to

store internal scalar variables and arrays used by ADS. VK must be
dimensioned at least 100, but usually much larger. If the use has not
provided enough storage, ADS will print the appropriate message and
terminate the optimization.

NRVK Dimensioned size of work array WK. A good estimate is
NRVK = 500 + lO*(NDV+NCON) + NCOLA*(NCOLA+3) + N*(N/2+l), where
N = MAX(NDV,NCOLA).

IWK(NRIWK) User provided work array for integer variables. Array IVK is I
used to store internal scalar variables and arrays used by ADS. IWK
must be dimensioned at least 200, but usually much larger. If the user

has not provided enough storage, ADS will print the appropriate

message and terminate the optimization.
NRIWK Dimensioned size of work array IWK. A good estimate is NRIVK = 200

NDV + NCON + N + MAX(N,2*NDV), where N=HAX(NDV,NCOLA).

4.3 Over-Riding ADS Default Parameters

Various internal parameters are defined on the first call to ADS which work
well for the "average" optimization task. However, it is often desirable to
change these in order to gain maximum utility of the program. This mode of
operation is shown in Figures 2 and 3. After the first call to ADS, various I
real and integer scalar parameters are stored in arrays WK and IWK respectively.

Those which the user may wish to change are listed in Tables 6 through 9,

together with their default values and definitions. If the user wishes to

change any of these, the appropriate component of WK or IVK is simply re-defined
after the first call to ADS. For example, if the relative convergence
criterion, DELOBJ, is to be changed to 0.002, this is done with the FORTRAN

statement;

VK(12) = 0.002

because VK(12) contains the value of DELOBJ.

I
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TABLE 6: REkAL PARAMETERS STORED IN ARRAY WK

MODULES WHERE USED
PARI%,:" :tR LOCATION DEFAULT ISTRAT IOPT IONED

. ,-.,1 0 .0 5-
i ET Y,:2 0.0 7 --

3 -0-03 - 4,5

-0 4,5

0.004 - 4,50:'!: _ 0 0 1 it LL

)'../ 3 ABS(FZ) 1000 ALL

ABS(FZ)/500 ALL
.E? 0 ABS(FZ)/1000 ALL

7E /._ ,:!0 . 05 -- - ]
...... : I 001ALL7>"": 0.001 -

L 3 0.0 1 ALL
D 7. 4 0. L S ALL
DLOB:1 15 0.1 - ALL -

DLOBJ2 16 1000.0 - ALL -

DX1 17 0.01 ALL -

DX2 18 0.2 - ALL -

EPSPEN 19 -0.05 2,3,4 -

EXTRAP 20 5.0 - ALL
FDCH 21 0.01 ALL
FDCHM 22 0.001 - ALL -

GMULTZ 23 10.0 8 - -

PSAIZ 24 0.95 8 - -
RMULT 25 5.0 1,5 - -
RMVLMZ(4) 26 0.2 6,7,8,9 - -

RP 27 10.0 1,5 - -
RPMAX 28 1.OE+1O 1,5 - -

RPMULT 29 0.2 1,5 - -

RPPMIN 30 1.OE-10 2,3,4 - -

RPPRIM 31 100.0 2,3,4 - -

SCFO 32 1.0 ALL ALL ALL
SCLMIN 33 0.001 ALL ALL ALL
STOL 34 0.001 4,5 -

THETAZ 35 0.1 - 4,5 -

XMUJLT 36 2.618034 - - 1,2,3,5,6,7
ZR0 37 0.00001 ALL ALL ALL
PMLT 38 10.0 6,7,8,9 4,5 -

1 if IOPT=4, CT=-O.1
2 if IONED=3 or 8, DABALP=0.001

If IONED=3 or 8, DELALP=O.05

4 If ISTRAT=9, RMVLMZ=0.4

NOTE: FZ is the objective function value for the initial design.

I
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TABLE 7: DEFINITIONS OF REAL PARAMETERS CONTAINED IN ARRAY WK

PARAMETER DEFINITION

ALAMDZ Initial estimate of the Lagrange Multipliers in the Augmented Lagrange i
Multiplier Method.

BETAMC Additional steepest descent fraction in the method of centers. After

moving to the center of the hypersphere, a steepest descent move is i
made equal to BETAMC times the radius of the hypersphere.

CT Constraint tolerance in the Method of Feasible Directions or the
Modified Method of Feasible Directions. A constraint is active if its

numerical value is more positive than CT.
CTL Same as CT, but for linear constraints.

CTLMIN Same as CTMIN, but for linear constraints.

CTMIN Minimum constraint tolerance for nonlinear constraints. If a i
constraint is more positive than CTMIN, it is considered to be
violated.

DABALP Absolute convergence criteria for the one-dimensional search when

using the Golden Section method.

DABOBJ Maximum absolute change in the objective between two consecutive

iterations to indicate convergence in optimization.

DABOBM Absolute convergence criterion for the optimization sub-problem when I
using sequential minimization techniques.

DABSTR Same as DABOBJ, but used at the strategy level.

DELALP Relative convergence criteria for the one-dimensional search when

using the Golden Section method.
DELOBJ Maximum relative change in the objective between two consecutive

iterations to indicate convergence in optimization.

DELOBM Relative convergence criterion for the optimization sub-problem when
using sequential minimization techniques.

DELSTR Same as DELOBJ, but used at the strategy level.

DLOBJ1 Relative change in the objective function attempted on the first I
optimization iteration. Used to estimate initial move in the one-
dimensional search. Updated as the optimization progresses.

DLOBJ2 Absolute change in the objective function attempted on the first
optimization iteration. Used to estimate initial move in the one-
dimensional search. Updated as the optimization progresses.

DX1 Maximum relative change in a design variable attempted on the first

optimization iteration. Used to estimate the initial move in the one- i
dimensional search. Updated as the optimization progresses.

DX2 Maximum absolute change in a design variable attempted on the first

optimization iteration. Used to estimate the initial move in the one-

dimensional search. Updated as the optimization progresses.

EPSPEN Initial transition point for extended penalty function methods.
Updated as the optimization progresses.

EXTRAP Maximum multiplier on the one-dimensional search parameter, ALPHA in i
the one-dimensional search using polynomial interpolation and
extrapolation.

FDCH Relative finite difference step when calculating gradients.

FDCHM Minimum absolute value of the finite difference step when calculating

gradients. This prevents too small a step when X(I) is near zero.

l
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I
TABLE 7 CONCLUDED: DEFINITIONS OF REAl. PARAMETERS CONTAINED IN ARRAY W'K

PARAME.TER DEFINITION

qi. !, .tx.' para:eter iu Sequential Quadratic programming.
D',. ovc fraction to avnid constraint violations in Sequential Quadratic

Po gr a m m i ng.
R !T Penalty function multiplier for the exterior penalty function method.

Must be greater than 1.0.
RM,7.MZ Initial relative move limit. Used to set the move limits in

sequential linear programming, method of inscribed hyperspheres and
sequential quadratic programming as a fraction of the value of X(I),
1 = , NDV.

R? initial penalty parameter for the exterior penalty function method or
the Augmented Lagrange Multiplier method.

?? .... !aximum value of RP for the exterior penalty function method or the
A ugmented Lagrange Multiplier method.

RFML'LT Multiplier on RP for consecutive iterations.
RRPMI!N Minimum value of RPPRIM to indicate convergence.
RPPR7 Initial penalty parameter for extended interior penalty function

methods.
S(YFC The user-supplied value of the scale factor for the objective function

if the default or calculated value is to be over-ridden.I SMTN M. inimum numerical value of any scale factor allowed.
V. Tolerance on the components of the calculated search direction to

indicate that the Kuhn-Tucker conditions are satisfied.
T HTAZ Nominal value of the push-off factor in the Method of Feasible

Directions.
-.ULT Multiplier on the move parameter, ALPHA, in the one-dimensional search

to find bounds on the solution.
Z,-, Numerical estimate of zero on the computer. Usually the default value

is adequate. If a computer with a short word length is used,
ZRO=I.OE-4 may be preferred.

PV.LT Penalty multiplier for equality constraints when IOPT=4 or 5.

TABLE 8: INTEGER PARAMETERS STORED IN ARRAY IWK

MODULES WHERE USED
PAFAME'T['P LOCATION DEFAULT ISTRAT IOPT IONED

S DV.1 - ALL
2 ALL ALL ALL

: h' .:: zO _ ALL -

-. -*,?.' 1,2,3 -
L ALL -L
2,

... "' ALL

17
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TABLE 9: DEFINITIONS OF INTEGER PARAMETERS CONTAINED IN ARRAY IWK

PARAMETER DEFINITION i
ICNDIR Restart parameter for conjugate direction and variable metric methods.

Unconstrained minimization is restarted with a steepest descent
direction ev.-ry ICNDIR iterations. I

ISCAL Scaling parameter. If ISCAL=O, no scaling is done. If ISCAL=, the
design variables, objective and constraints are scaled automatically.

ITMAX Maximum number of iterations allowed at the optimizer level.

ITRMOP The number of consecutive iterations for which the absolute or
relative convergence criteria must be met to indicate convergence at

the optimizer level.

ITRMST The number of consecutive iterations for which the absolute or I
relative convergence criteria must be met to indicate convergence at

the strategy level.
JONED The one-dimensional search parameter (IONED) to be used in the

Sequential Quadratic Programming method at the strategy level.
JTMAX Maximum number of iterations allowed at the strategy level.

4.4 User-Supplied Gradients

If it is convenient to supply analytic gradients to ADS, rather than using
internal finite difference calculations, considerable optimization efficiency is
attainable. If the user wishes to supply gradients, the flow logic given in
Figure 3 is used. In this case, the information parameter, INFO, will be

returned to the user with a value of INFO=2 when gradients are needed. The user
calculates the NGT gradients of the constraints identified by array IC and
stores these in the first NGT columns of array A. That is column I of A

contains the gradient of constraint J, where J=IC(I). I
4.5 Restarting ADS

When solving large and complex design problems, or when multi-level

optimization is being performed, it is often desirable to terminate the

optimization process and restart from that point at a later time. This is I
easily accomplished using the ADS program. Figure 4 provides the basic
flowchart for this process. Whenever control is returned from ADS to the
calling program, the entire contents of the parameter list are written to disk

(or a file in a database management system). The program is then stopped at
this point. Later, the program is restarted by reading the information back
from disk and continuing from this point. If optimization is performed as a
sub-problem within analysis, the information from the system level optimization
is written to disk and the analysis is called. The analysis module can then

call ADS to perform the sub-optimization task. Then, upon return from analysis,

the system level information is read back from storage and the optimization I
proceeds as usual. From this, it is seen that considerable flexibility exists
for multi-level and multi-discipline optimization with ADS, where the ADS
program is used for multiple tasks within the overall design process.

18 I
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The user may wish to stop the optimization at specific times during the
process. The parameter IMAT is array IWK gives general information regarding
the progr'ss of the optimization. Appendix B provides details of this parameter
as IeL as other parameters stored in WK and IWK .ihich may be useful to the

:.p :u user of ADS.

BEGIN

YES IS THIS A

CALL ADS (INFO,. )

READ C(<TE'TS CF STOPFOR YES WRITE CONTENTS OF
ADS PARAMETER LIST LATER RESTART ADS PARAMETER LIST

FROM DISK FILE ONTO DISK FILE

NO EXIT

CONTINUE

Figure 4: Restarting ADS

4.6 Choosing An Algorithm

One difficulty with a program such as ADS, which provides numerous options,
is that of picking the best combination of algorithms to solve a given problem.
While it is not possible to provide a concise set of rules, some general
guidelines are offered here based on the author's experience. The user is
strongly encouraged to try many different options in order to gain familiarity
with ADS and to improve the probability that the best combination of algorithms
is found for the particular class of problems being solved.
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I
UNCONSTRAINED FUNCTIONS (NCON=O, Side Constraints OK)

ISTRAT=O

Is computer storage very limited? U
Yes - IOPT=l. Are function evaluations expensive?

Yes - Is the objective known to be approximately quadratic?

Yes - IONED=4 I
No - IONED=3

No - IONED=l or 2
No - Is the analysis iterative?

Yes - IOPT=3. Are function evaluations expensive?
Yes - Is the objective known to be approximately quadratic?

Yes - IONED=4
No - IONED=3

No - IONED=I or 2

No - IOPT=2 or 3. Are function evaluations expensive?
Yes - Is the objective known to be approximately quadratic?

Yes - IONED=4
No - IONED=3

No - IONED=l or 2

CONSTRAINED FUNCTIONS (NCON.GT.O)

Are relative minima known to exist?
Yes - ISTRAT=l, IOPT=3. Are function evaluations expensive?

Yes - IONED=3
No - IONED=l or 2

No - Are the objective and/or constraints highly nonlinear?
Yes - Are function evaluations expensive?

Yes - ISTRAT=O, IOPT=4, IONED=7

No - ISTRAT=2, 3 or 5, IOPT=2 or 3, IONED=l or 2 I
No - Is the design expected to be fully-constrained?

(i.e. NDV active constraints at the optimum)
Yes - ISTRAT=6, IOPT=5, IONED=6
No - Is the analysis iterative?

Yes - ISTRAT=O, IOPT=4, IONED=7 or
ISTRAT=8, IOPT=5, IONED=7 or

ISTRAT=9, IOPT=5, IONED=7 I
No - ISTRAT=O, IOPT=5, IONED=7 or

ISTRAT=8, IOPT=5, IONED=7 or

ISTRAT=9, IOPT=5, IONED=7

I
I
I
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GF'NERA NIPPILICATIONS

little is knovn about the nature of the problem !)ei'g -
onc vith a vide variety of problems. a ver-y direct rpi" e

heo -)rvan ADS. The following table of parameters is offered a;-
vcms. Thcn rsi ng ADS the f irs t f ew t imes , thle -us.r c I

7ive. n 'ero, cather than using the decision appr-oac!'g
is 'i.e'o that a constrained optimization problem is bei:"- f e

-cei-nstrained, ISTRAT=0, I0PT=3 and IONED=2 or 3 ~reccr''
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5.0 EXAMPLES

I~-Ke folling t-wo-variable optimization problem vi th tv.o nonl inear

2A-Al +SQRTI(2)+A2

AI*Al SOR-F(2)*A2 I

*[Al + DT2*2

0'.01 .LE. Ai LE. l.OE±20 i=1,2

Th1r -acually the optimization of the classical 3-bar truss shov,.n in Figure 5
for: a simplicity, only the tensile stress constraints in members 1 and 2

cde d~r P l a re i n cl.ud e d. The loads, P1 and P2, are applied separately arid

- a ope':i f 4ic. ve ig ht i s 0 .1 1b . per cubic inch. The structure is

'I.eti sor Xa corespnd to the crosssetoa araoa r 3 ndX( 2) corresponds tthcrs-sect ional area of memoer



I

< 0 in. - e-- 1'- --- 0 in. I I
loin. -

_ ___

Pl = 20000 lb. P2 = 20000 lb.

Figure 5: Three-Bar Truss

In the source listings for the examples, the arrays are dimensioned
sufficiently large to solve 10 design variable problems with 20 constraints.
This allows the user to create larger problems using these programs as a basis.
Note that the required array dimensions given in this manual are minimums. The
arrays can be dimensioned larger than needed, just as is done here.

5.1 Example 1; All Default Parameters 1
Figure 6 gives the FORTRAN program to be used with ADS to solve this

problem. Only one line of data is read by this program to define the values of
ISTRAT, IOPT, IONED and TPRINT and the FORMAT is 415. When the optimization is I
complete, another case may be run by reading a new set ot data. The program
terminates when ISTRAT=-l is read as data.

Figure 7 gives the results obtained with ISTRAT=0, IOPT=5, IONED=7 and
IPRINT=lO00. The reader is encouraged to experiment with this program using
various combinations of the options from Table 4.

5.2 Example 2; Initial Parameters Are Modified I
The 3-bar truss designed in Section 5.1 is now designed with the following

changes in the internal parameters: I

Parameter New Value Location inK - Location in -IK

CT -0.05 3 I
CTMIN 0.001 6
FDCH 0.001 21 -

ITRMOP 2 - 4 I
The FORTRAN program used here is shown in Figure 8 and the results are

given in Figure 9.

22 I
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I

5 Ex:ale 2; Gradients Supplied by the User

-The J-ba- , rus designed in Sections 5. ' and . :ith
nner-su~ppled gradients. The parameters CT, CTI', CjT.!h', :'.- 1!> ?P.OP ate
.e:- -r eas in Sectin 5.2. Also, no, -PRICNT ?<i o pv ::i: -C<r 7.pZ':a

el , np timization output.
The FORTR-,..N progr-am associated ith this ex.amnple in g in n 1,-,u-e !0.

Figure I gives the results.

I
I
I
I
I
I
I
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C SIMPLIFIED USAGE OF ADS. THE THREE-BAR TRUSS.
C REQUIRED ARRAYS.

DIMENSION X(Il),VLB(1l),VUB(Il),G(2'0) ,IDG(20) ,IC(2C)),DF(11 ),

1 A( 11,20), WK( 1000), lWK(5O0)I
C ARRAY DIMENSIONS.

NRA 2.
NC:OLA-:
NRWK= 10001
NRIWK=500

C PARAMETERS.
IGRAD=OI
NDV=2
NCON=2

C INITIAL DESIGN.

C BOUNDS.
VLB(1)=.O1 I
VLB(2)- .01
VUB(1)=l.OE+2O

VUB(2)=1 .OE+20I
c IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.

I DG (1)= 0
IDG(2)=O

C INPUT.
READ(5,30) ISTRAT,IOPT,IONED,IPRINT

C OPTIMIZE.
INFO = 0

10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 VUB,OBJ,G, IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK, IWK,NRIWK)
IF (INFO.EQ.O) GO TO 20

c EVALUATE OBJECTIVE AND CONSTRAINTS.

OBJ=2.*SQRT(". )*X(1)+X(2)

C GO CONTINUE WITH OPTIMIZATION.
GO TO 10

20 CONTINUEI
C PRINT RESULTS.

WRITE(6,40) OBJ,X(l),X(2) ,G(l) ,G(2)
STOP

30 FORMAT (415)I
40 FORMAT (//SX,7HOPTIMUM,5X,5HOBJ =,E12.5//5X,6HX(l) =,El2.5,5X,

1 611X(2) =,E12.S/5X,6HG(1) =,E12.5,5X,6HG(2) =,E12.5)

ENDI

Figure 6: Example I - All Default Parameters
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AAAAA DDDDDD SSSSSS

A A D D '
A A D D S

AAAAAAA D D SSSSS

A A D D

A A D D

A A DDDDDD SSSSSSI
FORTRAN PROGRAM

F 0 R

AUTOMATED DESIGN SYNTHES I S

I (C) COPYRIGHT, EDO, INC., 1987

ALL RIGHTS RESERVED, WORLDVIDE

V E R S I 0 N 3.00

CONTROL PARAMETERS

ISTRAT = 0 IOPT 5 IONED 7 IPRNT I)

IGRAD = 0 NDV 2 NCON - 2

OPTIMIZATION RESULTS

(TJECTIVF FUNCTION VALUE 2.62899EAF,0

I DESIGN VARIABLES

LOWER UPPER

VARIABLE BOUND VALUE BOUND

1 1.OOOOOE-02 7.82696E-01 1.OOOOOE+20

2 l.OOOOOE-02 4.15190E-01 1.O0000E+20

DESIGN CONSTRAINTS

U 1) 3.8170E-03 -6.3500E-01

FUNCTION EVALUATIONS = 26

OPTIMUM OBJ = .26290E+01

I X) =./8270E+00 X(2) = .41519E+00
.I) 38170E-02 G(2) = -.635OOE,00

U Figure 7: Example I - Output
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C USAGE OF ADS. OVER-RIDING DEFAULT PARAMETERS. THE THREE-BAR TRUSS.
DIMENSION X(11),VLB(11),VUB(11),G(20),IDG(20),IC(20),DF(11),
1 A(11,20),WK(1OOO),IW K(5OO)

C ARRAY DIMENSIONS.
NRA=2
NCOLA=2I
NRWK= 1000
NRIVK=500

C PARAMETERS.

I GRAD= 0
NDV=2
NCON=2

C INITIAL DESIGN.I
X(1)=1.
X(2)=1.

C BOUNDS.
VLB(1)=.Ol
VLB(2)=.O1
VUB(1)=1.OE+20
VUB(2)=1 .OE+20I

C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(l)=O

IDG(2)=O
C INPUT.

READ(5,30) ISTRAT,IOPT,IONED,IPRINT
C INITIALIZE INTERNAL PARAMETERS.

INFO=-2
CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,
1 VUB,OBJ,G, IDG,NGT, IC,DF,A,NRA,NCOLA,WK,NRK,IK,NRIWK)

C OVER-RIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP.I
WK(3)=-0.05
WK(6)=0.OO1
WK(21)=O.OO1
IWK (4) =2

C OPTIMIZE.
10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,

1 VUB,OBJ ,G,IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK, IWK,NRIWK)I
IF (INFO.EQ.O) GO TO 20

C EVALUATE OBJECTIVE AND CONSTRAINTS.

OBJ=2.*SQRT(2. )*X(1)+X(2)I

C GO CONTINUE WITH OPTIMIZATION.
GO TO 10I

20 CONTINUE
C PRINT RESULTS.

VRITE(6,40) OBJ,X(1) ,X(2) ,G(1) ,G(2)I
STOP

30 FORMAT (415)
40 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ =,E12.5//5X,6HX(l) =,E12.5,5X,

1 6HX(2) =,El2.5/5X,6HG(1) =,E12 5,5X,6HG(2) =,E12.5)
END

Figure 8: Example 2 - Modify Default ParametersI
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AAAAA DDDDDD SSSSSS

A A D D S
A A D D S
AAAAAAA D D SSSSS
A A D DSIA A D D

FO0RT R AN P ROG RA M

T 0 M A T E D D ES Ih G t

I(C) COPYP.-c,HT, EDO, INC. , 1987
ALL RIGHTS RESERVED, WORLDWIDE

V E RSIO N 3.00

CONTROL PARAMETERSIISTRAT = 0 lOFT = 5 IONED IFRINI -

IGRAD 0 NDV = 2 NCON2

------------
OPTIMIZATION RESULTS

1 OBJECTIVE FUNCTION VALUE 2.63726E4-00

I DESIGN VARIABLES

LOWER UPPERIVARIABLE BOUND VALUE BOUND
1 1.OOOOOE-02 7.86349F-01 1.OO0O0E+21-
'2 1.OOOOOE-02 4.13130E-01 1.OOOO"O?

DESIGN CONSTRAINTS

1) 6.5273E-04 -6.3520E-01

FUNCTION EVALUATIONS = 29

OPTIMUM OBJ = .26373E+01,

X(1) = . 78635E+00 X(2) = .41313E+00O
G(1) - .65273E-03 G(2) = -. 63520E+00O

Figure 9: Example 2 -Output
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C USAGE OF ADS. OVER-RIDING DEFAULT PARAMETERS, AND PROVIDING
C GRADIENTS. THE THREE-BAR TRUSS.
C REQUIRED ARRAYS. D1KNSII

1 A(11,20),WK(1000),IWK(500)
DIMENSION B(2,2)

C ARRAY DIMENSIONS.I
NRA =2
NCOLA=2
NR'K= 1000

NRIWK= 500
C PARAMETERS.

I GRAD= 1

NDV=2I
NCON=2

C INITIAL DESIGN.

X(1)=1.I

C BOUNDS.
VLB(1)=.O1
VLB(2)=.O1
VUB(1)=1.OE+20
VUB(2)=1.OE+20

C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.I
IDG(1)=O
IDG(2)=O

C INPUT.

READ(5,70) ISTRAT,IOPT,IONED,IPRINT
C INITIALIZE INTERNAL PARAMETERS.

INFO=-2

CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,I
1 VUB,OBJ,G, IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK, IWK,NP.IWK)

C OVER-RIDE DEFAULT VALUES OF CT, CTMIN, THETAZ AND ITRMOP.
VK(3)=-O.05
WK(6)=O.OO1I
WK (21) =0 .001
IWK (4) =2

C OPTIMIZE.I
10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,VLB,

1 VUB,OBJ,G,IDG,NGT,IC,DF,A,NRA,NCOLA,WK,NRWK, IWK,NRIWK)
IF (INFO.EQ.O) GO TO 60I
IF (INFO.GT.1) GO TO 20

C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT(2. )*X(1)+X(2)

C GO CONTINUE WITH OPTIMIZATION.

GO TO 10I
20 CONTINUE

Figure IC0: Example 3 - Gradients Supplied by the UserI
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C (RADIEN'T OF OBJ.I DF( 1)=2 . SQRT(2.)
DF(2)-1 .0
IF (NGT.EQ.O) GO TO 10

C CONSTRAINT GRADIENTS. USE ARRAY B FOR TEMPORARY STORAGE.

Dl=(X(1)+SQRT(2.)*X(2))**2

I (2.*KY(1)*X(1)*Dl)'

C (2).

I B(2,2)=SQRT(2.)*B(1,2)
C STORE APPROPRIATE GRADIENTS IN ARRAY A.

DO 30 J=1,NGT
iK = IC ( J)

30 A(2,J)=B(I,K)

k0 TO 10
*: CONTINUE

C PRINT RESULTS.
WRITE(6,80) OBJ,X(1) ,X(2) ,G(l) ,G(2)I STOP

70 FORMAT (415)
80 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ =,El2.5//5X,6HX(1) =,E12.z',5Z,I 1 6HX(2) =,E12.5/5X,6HG(l) =,E12.5,5X,6HG(2) =,E12.5)

END

I Figure 10 Concluded: Example 3 - Gradients Supplied b" thc USeL
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A A D D SI
A A D D S
AAAAAAA D D SSSSS
A A D D S
A A D D SI

A A DDDDDD SSSSS

FOR TR A N P ROG RA M

AU TOM A T ED D ES I GN SY NT HE SI S

(C) COPYRIGHT, EDO, INC., 1987
ALL RIGHTS RESERVED, WORLDWIDE

V E R S IO0N 3.00

CONTROL PARAMETERS
ISTRAT = 0 IOPT 5 IONED = 7 IPRINT 2020

IGRAD = 1 NDV = 2 NCON = 2

SCALAR PROGRAM PARAMETERS
REAL PARAMETERSI
1) ALAMDZ = OOOOOE+00 20) EXTRAP = 5.OOOOOE+OO
2) BETAMC = .OOOOOE+00 21) FOCH = 1.OOOOOE-03
3) CT = -5.OOOOOE-02 22) FDCHM = 1-OOOOOE-03
4) CTL =-5.OOOOOE-03 23) GMULTZ = 1.OOOOOE+01I
5) CTLMIN = 1.OOOOOE-03 24) PSAIZ =9.50000E-O1
6) CTMIN = 1.OOOOOE-03 25) RMULT = 5.OOOOOE+OO

7) DABALP = 1.OOOOOE-04 26) RMVLMZ =2.OOOOOE-01I
8) DABOBJ = 3.82843E-03 27) RP =1.OOOOOE+01
9) DABOBM = 7.65685E-03 28) RPMAX =1.OOOOOE+10

10) DABSTR = 3.82843E-03 29) RPMULT =2.OOOOOE-O1

11) DELALP = 5.00000E-03 30) RPPMIN =1.OOOOOE-10
12) DELOBJ = 1.OOOOOE-03 31) RPPRIM =1.OOOOOE+02
13) DELOBM = 1.OOOOOE-02 32) SCFO =1.OOOOOE+OO

14) DELSTR = 1.OOOOOE-03 33) SCLMIN =1.OOOGOE-03I
15) DLOBJi 1.OOOOOE-O1 34) STOL = 1.OOOOOE-03
16) DLOBJ2 = 1-OOOOOE+03 35) THETAZ = 1.OOOOOE-01
17) DX1 = 1.OOOOOE-02 36) XMULT = 2.61803E+00

18) DX2 = 2.OOOOOE-O1 37) ZRO = 1.OOOOOE-05
19) EPSPEN = -5.OOOOOE-02 38) PMLT = 1.OOOOOE+O1

INTEGER PARAMETERSI
1) ICNDIR = 3 4) ITRMOP = 2 6) JONED = 7
2) ISCAL = 1 5) ITRMST = 2 7) JTMAX = 20

3) ITMAX = 40I

Figure 11: Example 3 - Output
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ARRAY STORAGE REQUIREMENTS

DIMENSIONED REQUIRED
ARRAY SIZE SIZE

IOPT =5; MODIFIED METHOD 01- 1 ~ DIREi[ IONS

OBJ =3.82843E+00

DECISION VARIABLES (X-VECTOR)
1) l.OOOOOE+OO 1.0000OOE+O

LOWER BOUNDS ON THE DECISION VARIABLES (VLB-VECTOR)
1) l.OOOOOE-02 1.OOOOOE-02

UPPER BOUNDS ON THE DECISION VARIABLES (VUB-VECTOR)
1) l.OOOOOE4-20 1.OOOOOE.20

I CONSTRAINT VALUES (q-VECTOR)
1) -2.92893E-01 -7.92B93E-01O

-ITERATION 1 OBJ =2.79647E+00

DECISION VARIABLES (X-VECTOR)I1) 6.75687E-01 8.85338E-01

ITERATION 2 OBJ = 2.63882E+00

DECISION VARIABLES (X-VECTOR)
1) 7.98080E-O1 3.81510E-01

-ITERATION 3 OBJ = 2.63724E+00

DECISION VARIABLES (X-VECTOR)
1) 7.86367E-01 4.13059E-01

Figure 11 Continued: Example 3 - Output
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FINAL OPTIMIZATION RESULTS

NUMBER OF ITERATIONS = 4

OBJECTIVE = 2.63794E+00

DECISION VARIABLES (X-VECTOR)

1) 7.86367E-01 4.13059E-01

CONSTRAINT VALUES (G-VECTOR)
1) 6.60856E-04 -6.35175E-01

CONSTRAINT TOLERANCE, CT = -2.5000E-02 CTL = -2.5000E-03 I
THERE ARE 1 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
CONSTRAINT NUMBERS I

1

THERE ARE 0 ACTIVE SIDE CONSTRAINTS

TERMINATION CRITERIA

KUHN-TUCKER PARAMETER, BETA = 9.65595E-06 IS LESS THAN 1.OOOOOE-03 i

OPTIMIZATION RESULTS

OBJECTIVE FUNCTION VALUE 2.63724E+00

DESIGN VARIABLES

LOWER UPPER
VARIABLE BOUND VALUE BOUND

1 1.OOOOOE-02 7.86367E-01 I.OOOOOE+20
2 1.OOOOOE-02 4.13059E-01 1.OOOOOE+20

DESIGN CONSTRAINTS

1) 6.6086E-04 -6.3517E-01 i
FUNCTION EVALUATIONS = 21

GRADIENT EVALUATIONS = 4

OPTIMUM OBJ = .26372E+01 i
X(1) = .78637E+00 X(2) = .41306E+00

G(l) = .66086E-03 G(2) = -.63517E+00 i
Figure 11 Concluded: Example 3 - Output
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I
0 .9 MAIN PROCRAM FOR SIMPLIFIED USAGE OF ADS

Figure 1" is a general-purpose calling program for use wi th ADS. The
as are diensinned sufticient to solve problems of up to 20 design variablef

an4 11 cn :Yl Arrays IC and A are dimensioned to allow for evaluation ofI: : F:, n .eiuever a question mark (?) is give , 1' i
S ........ ;he s t " supply the appropriate information. Nooen t at the

N "s r t;"'ot an implied FORTRAN DO LOOP b t IS , p .1 y:A1n -n- " i: of the D, -i <'n variables must be defined here.
........ :...e EVAL i.s ; Kas er-supplied subroutine for evaiuat ng rio:tionS

(if ;Yei sup,:iud). The calling statement i:

E=. (NF'3, " .>N,JBJ,X,G,DF.NCT,IC,A,NRA)

The para-.ters INFO, NDV, NCON, X, NGT, IC and NRA are input to Subroutine EVAL,
while 0Bj. G. DF and A are output. Depending on the user needs, this may be
simplifed. For example, if IGRAD=0 and NDV and NCON are not required by the
analysis. the calling statement may be

CALI EVAL (OBJ,X,G)

Also, a prc:t control may be added so, after the optimization is complete, EVAL
can be called again to print analysis information.

C SPLFIED USAGE OF THE ADS OPTIMIZATION PROGRAM.
DIMENSION X(21),VLB(21),VUB(21),G(lOO),IDG(100),IC(30),DF(21),

* A(21,30),VK(l0000),IWK(2000)
NRA-=21!

NCOLA=30
NROK: 10000
,RI K2O000

C TNITIZIZ7TION.
................. T

X(I)=? I1 ,NDV

".B(I)- ,  I-I,NDV
VJB(I)- ?  T=lNDV
!DG(I)=? I=l,NCON

iSTRATi9
1OPT=?

IO',ED=?
!PRINT.?
INFO=O

10 CALL ADS (INFO,ISTRAT,IOPT,IONED,IPRINT,IGRAD,NDV,NCON,X,

.L.,VUB, OBJ ,G, IDG,NGT, IC,DF,A,NRA,NCOLA,WK,NRJK,IWK,NRIWK)
CL7 EVAL (INFO,NDV,NCON,OBJ,X,G,DF,NGT,TC,A,NRA)
1P .O.CT.O) GO TO 10

C P77K/,'TInN IS COMPLETE. PRINT RESULTS.

. , .: :_;:: n Fo: 5?xplified Usage of ADS
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APPENDIX A

QUICK REFERENCE TO ADS OPTIONS

IOPT OPTIMIZER I
1 Fletcher-Reeves
2 Davidon-Fletcher-Powell (DFP)
3 Broydon-Fletcher-Goldfarb-Shanno (BFGS) I
4 Method of Feasible Directions
5 Modified Method of Feasible Directions

SLI ,
STRATEGY ISTRAT IOPT 1 2 3 4 5

None 0 X X X X X
SUMT, Exterior 1 X X X 0 0
SUMT, Linear Extended Interior 2 X X X 0 0
SUMT, Quadratic Extended Interior 3 X X X 0 0ISUMT, Cubic Extended Interior 4 X X X 0 0

Augmented Lagrange Multiplier Meth. 5 X X X 0 0
Sequential Linear Programming 6 0 0 0 X X I
Method of Centers 7 0 0 0 X X
Sequential Quadratic Prcgramming 8 0 0 0 X X
Sequential Convex Programming 9 0 0 0 X X I

ONE-DIMENSIONAL SEARCH IONED

Golden Section Method 1 X X X 0 0
Golden Section + Polynomial 2 X X X 0 0
Polynomial Interpolation (bounded) 3 X X X 0 0
Polynomial Extrapolation 4 X X X 0 0 I
Golden Section Method 5 0 0 0 X X

Golden Section + Polynomial 6 0 0 0 X X
Polynomial Interpolation (bounded) 7 0 0 0 X X
Polynomial Extrapolation 8 0 0 0 X X

I
NOTE: An X denotes an allowed combination of algorithms.

II
I
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I :\APPENrDL Xi

I,.,EMA.... APENI STORED .' ARRAYS VY AND IWK

i vK I WKotain information calcul:ted by ADS vht:h I :.etimes
n .. ,.e .roress of the opt imirnat ior>.. T a 2r 3s d

7 1 " :: f-et -s .'hi n ma' be of interest to the user. Note h', tnese
,,: be changed by the user- during the optimization -osc::s.

TAB.E 3-1 REAL PARAMETE.RS STORED IN ARRAY WY

:OCATION DEFINITION

PHA 52 Move parameter in the one-dimensional search.
. 53,Aloha at the strategy level for ISTRAT=3.

K The value of the penalty in SUMT methods.
The s'ooe of the OB.J versus \I.PHA function in the
oe -! i es ional sealch.
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i
TABLE B-2: INTEGER PARAMETERS STORED IN ARRAY IWK

PAPAMETER LOCATION DEFINITION

IDAB 23 Number of consecutive times the absolute i
convergence criterion has been satisfied at the
optimization level.

IDAB3 24 Same as IDAB, but at the strategy level.
IDEL 25 Number of consecutive Limes the relative

convergence criterion has been satisfied at the
optimization level.

IDEL3 26 Same as IDEL, but at the strategy level.
IFCALL 28 The number of times the objective and constraint

functions have been evaluated.
IGCALL 29 The number of times analytic gradients have been i

evaluated.

IMAT 34 Pointer telling the status of the optimization

process.
0 - Optimization is complete.

1 - Initialization is complete and control is being
returned to the user to over-ride default
parameters.

2 - Initial function evaluation.

3 - Calculating analytic gradients.
4 - Calculating finite difference gradients. NXFD

identifies the design variable being changed.

5 - One-dimensional search is being performed.
See LGOTO.

ITER 45 Iteration number at the optimization level.JTER 46 Iteration number at the strategy level.

LGOTO 54 Location in one-dimensional search.
1 - Finding bounds on the solution. I
2 - Golden Section method.

3 - Polynomial interpolation after Golden Section.
4 - Polynomial interpolation after getting bounds.
5 - Polynomial interpolation/extrapolation.

NAC 58 Number of active constraints.
NACS 59 Number of active side constraints.
NVC 68 Number of violated constraints. I
NXFD 69 Design variable being perturbed during finite

difference gradients.

I
I
I
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A P PEN C

I ':. in; ta wy i oil 0io fI IlIRT, 10PT and 10N',D. )iillv otc
% DS c';s t ea ace used . Th er-e fok)re , .cm

II -a denired only to load those routines .,hJch are 'u allv
aSe Is _ >1 es u It in 'unsatis fied externals" at run ime , hnn Camost
sx S e -arogr-am1 can be executed anyw'ay since the unsatisfied xe rn a

.e -ct actually called. Below is a list of the routines needed] for a
e cmbinat'on of algorithms. In some cases, slightly more routines are

than are absolutely necessary, but they are short and a more precise
.:'aidt be u7ndully complicated .

A L AS LOAD THE FOLLOING SUBROUTINES:

ADS, ADSOO1, ADS002, ADS004. ADSOO5, ADSO06, ADSOO7, ADS009, ADS0IO.
A .DS102, ADS1Q3, ADS105, ADSll2, ADS122, ADS2Ol, ADS2O6, ADS2ll, ADS2l6, D26
A.237, ADS4Ol, ADS/4O2, ADS403, ADS42O, ADS5O3, ADS5O4, ADS506,

ADS 510

Dc p e ading on the value of ISTRAT, the following subroutines are also

s a i stae g routines are added. Go to the optimizer level

X~AD30: ADDS508r

ISP.T 2, Add: ADSOO8, ADS3O2, ADS303, ADS308, ADS508

ISTRAL=. 3,, Add: ADS0O8, ADS3O2, ADS304, ADS3O8, ADS508

I STRAT 4, Add: ADSOO8, ADS3O2, ADS3O5, ADS3O8, ADS508

ISTRAT 1 , Add: ADS00O, ADS3O2, ADS3O6, ADS3O7, ADS508

1ISTRAT =6, Add: ADS320, ADS321, ADS323, ADS333

1S7T 7-- Add: ADS323, ADS33O, ADS33l, ADS333

.............aAd:ADS2O7, ADS2l7, ADS2l8, ADS22l, ADS223, ADS3lO, ADS333,

t DS3171, ADS375, A0S376, ADS377, ADS378, ADS404, ADS5O?,I .DS508, ADS509

-. A 27DS, ADS217, ADS218, ADS221, ADS223, ADS325, ADS326,

I 39



OPTIMIZER LEVEL

Depending o r, the value of !OPT, the ' ,'L ow ing sub rout ines are also
required:

IOPT = 1, Add: ADS2O4, ADS2l3, ADS2l4, ADS509

IOPT =2, Add: ADS213, ADS214, ADS235, ADS4O4, ADS5O3, ADS509

IOPT = 3, Add: ADS2l3, ADS2l4, ADS235, ADS404, ADS5O3, ADS509

IOPT = 4, Add: ADS2Ol, ADS2O5, ADS207, ADS217, ADS2lB, ADS221, ADS223,I

ADS507

IOPT = 5, Add: ADS2O1, ADS2O2, ADS2O3, ADS2O7, ADS2O9, ADS217, ADS218,I
ADS22l, ADS223, ADS235, ADS507

ONE-DIMENSIONAL SEARCH LEVELI

Depending on the value of IONED, the following subroutines are also
required:I

TONED = 1-4, Add: ADSll6, ADSll7, ADSl18, ADSl2l, ADS126, ADS127

TONED = 5-8, Add: ADSl0l, ADS1O4, ADSlO6, ADSlO8, ADS1O9, ADSllO,
ADSlll, ADSll5, ADSl19, ADSl21, ADS124, ADS125,
AD S502
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APPENDIX D

ADS SYSTEM SUBROUTINES

:.7< sic'-o'.'tnes 'she ADS systerl are listed h-'e . .. .rief

de - . a Moit subroutines are internally dccut .
-h -f - -.. ; a !isting for more details.

.. AS. A are control level ro. tinc o. ,ADS> i SI i. i :. - :: 1 c. = r .leve routines, ADS20!-ADS22D ur , :'i' W' A ': !e

- . -' .:: re s trate y level routir es. A ADSi K, a. p:n
...............- 

A
.7 19) arc utility' r-outines.

R fUT'I:; PURPOSE

ADS - Main control routine for optimization.

ADSCO0 - Control one-dimensional search level.

ADSO02 - Control optimizer level.

ADSO03 - Control strategy level.

ADSO04 - Define work array storage allocations.

ADS005 - Initialize scalar parameters to their default values.

ADSOC6 - Initialize scale factors.

ADSO7 Calculate scale factors, scale, unscale.

ADS'- - Calc-late gradients of pseudo-objective for ISTRAT=1-5.

ADS . .- order IC and A arrays.

ADSCI. - Calculates convergence criteria parameters.

ADS!IW - Coefficients of linear polynomial.

ADS>!"2 - Coefficients of quadratic polynomial.

ADSIOC - Coefficients of cubic polynomial.

ADSI?., - Zeroes of polynomial to third-order.

ADI -I -Minimums of polynomial to third-order.

. Evaluate n-th order polynomial.

- F:id ini:m of a function by polynomial interpola, on.

, : 'rue: of a function by polynoi al n te polat ion

"'4



ROUTINE PURPOSE I

ADS11O - Evaluate slope of n-th order polynomial.

ADSI11 - Polynomial interpolation for constraint boundaries. i
ADS112 - Find ALPMAX so NDV side constraints are encountered.

ADS115 - Control one-dimensional search for constrained functions.

ADS116 - Control one-dimensional search for unconstrained functions.

ADS117 - Polynomial interpolation of unconstrained function, within
bounds.

ADS118 - Polynomial interpolation of unconstrained function, no
bounds given.

ADS119 - Polynomial interpolation of constrained function, no bounds
given.

ADS121 - Find bounds on minimum of unconstrained function. i
ADS122 - Initial interior points for Golden Section method.

ADS123 - Constrained one-dimensional search by Golden Section method.

ADS124 - Update bounds and get new interior point in Golden Section
method, constrained.

ADS125 - Find bounds on minimum of constrained function.

ADS126 - Unconstrained one-dlmensional search by Golden Section
method.

ADS127 - Update bounds and get new interior point by Golden Section i
method, unconstrained.

ADS201 - Identify NGT most critical constraints. i
ADS202 - Invert matrix B and store back in B.

ADS203 - Delta-X back to boundary in Modified Method of Feasible
Directions.

ADS204 - Fletcher-Reeves unconstrained minimization. I
ADS205 - Method of Feasible Directions.

ADS206 - X = Xold + ALPHA*S, subject to side constraints.

ADS207 - Maximum component (magnitude) of each column of A.
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I
PURPOSE

ADS.L9 Calculate B = A-Transpose times A.

ADS'!: - J' iate convergence parameters IDEL and IDAB.

ADS2 ") Calculate initial ALPHA for one-dimensional search based on

cI -ecive function value.

ADS?? Cal-l.ate initial ALPHA for one-diwensional search based onI ]<-values.

- ?in:te ifference gradients of objective and constraints.

I All??"  :.e dire~tic- nfinding task for Methods of Feasible

ADSI --Solve special LP sub-problem from ADS217.

,DS22I -" Push-off factors for Methods of Feasible Directions.

I ADS223 - Identify active side constraints.

ADS231 - Modified Method of Feasible Directions.

ADS235 - Variable Metric Methods, IOPT=2,3.

ADS236 - Search direction for Variable Metric Methods.

ADS237 - Penalty for equality constraints, IOPT=4,5.

ADS30! - Exterior Penalty Function Method, ISTRAT=l.

ADS302 - Calculates penalty for penalty function methods, ISTRAT=l-5.

I ADS303 - Linear Extended Penalty Function Method, ISTRAT=2.

ADSI)' 4 - Quadratic Extended Penalty Function Method, ISTRAT=3.

ADS_.Ci Cubic Extended Penalty Function Method, ISTRAT=4.

AD53 4 Augmented Lagrange Multiplier Method, ISTRAT=5.

ADS307 - Update Lagrange Multipliers, ISTRAT=5.

I ADS308 - Calculate penalty parameters, ISTRAT=5.

ADS310 - Sequential Quadratic Programming, ISTRAT=8.

ADS320 - Sequential Linear Programming, ISTRAT=6.

ADS321 - Control solution of LP sub-problem, ISTRAT=6.
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ROUTINE PURPOSE

ADS323 - Update move limits, ISTRAT=6,7.

ADS325 - Sequential Convex Programming, ISTRAT=9. I
ADS326 - Solve convex sub-problem, ISTRAT=9.

ADS330 - Method of Centers, ISTRAT=7.

ADS331 - Control solution of LP sub-problem, ISTRAT=7.

ADS333 - Calculate maximum constraint value.

ADS371 - Control solution of QP sub-problem, ISTRAT=8.

ADS375 - Temporary objective, ISTRAT=8.

ADS376 - Gradient of pseudo-objective for one-dimensional search,
ISTRAT=8.

ADS377 - Change in objective gradients, ISTRAT=8.

ADS378 - Update Hessian matrix, ISTRAT=8.

ADS401 - Print arrays.

ADS402 - Print array title and array. Calls ADS401.

ADS403 - Print scalar control parameters.

ADS404 - Print Hessian matrix.

ADS420 - Print final optimization results.

ADS501 - Evaluate scalar product of two vectors. I
ADS502 - Find maximum component of vector.

ADS503 - Equate two vectors.

ADS504 - Matrix-vector product.

ADS506 - Initialize symmetric matrix to the identity matrix.

ADS507 - Normalize vector by dividing by maximum component. I
ADS508 - Calculate gradient of pseudo-objective for ISTRAT=I-5.

Called by ADSO08. I
ADS509 - Identify active side constraints.

ADS510 - Scale, unscale the X-vector. I
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APPENDIX E

1,, CASE OF DIFFICULTY

: ":..ative. robust, and there should .eliom be a case
"'g , .. .g e s : arj( , J r ing the optimization. Also, numer -o us i i t e rna I

-, 7a ", to avoic exponent overflows, divide by zero, and similar run
ingth otimzaio. lso nmeousi:5en.

'I .Isa..-v, "ven something seems wrong, it can be traced to the basic setup of

t 'e pt:7::zation problem or (more often) simple programming errors. Thus, while
s .icut to project all possible errors, some are common enough to be

able toffer the follo-ing short list of items to check.

i. Check all array dimension statements. Be sure the values of NRAf, MCOLA,

and NRI''K are "orrect. ADS is written in single precision and double
-e ision-n should really not be needed at the optimization level. if tihe

a3! a.sc-s p rogram is written in do.uble precision, be sure to transfer all
r -s and arra equivilant single dimension values before calling ADS

sub '':'"ser them has> on return. This effects very few param-te-s and
a -. : o some rrcs overlooked, and is very difficult to debug.

-he parameter list for calling ADS. Be sure all parameters areI the proper order. A common error is to create a program with
a - ht- a o 80 column -ines, while using a compiler that ignores all
Ch- 'o . S after column 72.

3. Tu*n '.ff the automatic scaling and try again. Use the over-ride capability
ast I'K(2) = 0. Sometimes the scaling actually makes the conditioning of
the =rblem worse, although in Version 2.00 it is greatly improved from
befo-e. If the difficulties still exist, leave the scaling turned off during
furth,'-er testing.

4. Set the print control, IPRINT to 3500 if ISTRAT is greater than zero or 3050
if .ST AT is equal zero. This will cause gradient information to be printed
d,:-Hg the optimization. If the gradient of the objective or an',' constraintf u nCIion has all zeroes, this parameter is not a function of the design
f unrIofs."hile it is theoretically possible to have a zero gradient, it is

e:: 7.T ra-e on a digital computer. Check problem formulation.

5. the order of magnitude of the components of the gradients. A well
cor. i tned problem will have roughly the same order of magnitude values

-,.71: a factor of 100). If one term is several orders of magnitude greater
............ ... , others it may help to scale this design variable by dividing by
n:;.. ..t order of magnitude. A common error in problem for'cuiation is

'. -,tion, say Q that must be less than Q0, where QQ is or, the order

i n -.rea ing the constriant (which is required to be less than orI. . " , a - " rie G(I) = Q - 90. This will make the constraint very
. beal 'wiI by ADS, because 0 must equal about 9.999.95 before the

considered active. Therefore, it is important to salc the
00.......:' a ,(1) /OO - I. Nov a constraint value of -0.01 will identify

jnt as being within one percent of being critical.
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I
6. As a last resort, turn on the one-dimensional search print control (set the

last digit of IPRINT to 5). Plot the objective and constraint functions
versus the move parameter, ALPHA. If one or more are extremely nonlinear.
reformulation of the problem by dividing that function by a large number i2 l
indicated. Another possibility here is that the finite difference gradient
parameters, FDCH and FDCHM are either too large or too small. If the analysis
is iterative, it often helps to try FDCH = 0.02 or larger and FDCHM = 0.01 or
larger. This will mask the inacuracies in the analysis. On ther other hand,
if the analysis is calculated very precisely as functions of the design
varibles, an order of magnitude smaller than the default value is indicated.

7. If the last resort fails, call EDO. Ve will do our best to help.

I
I
I
I
I
I
I
I
I
I
I
I
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APPENDIX F

... :NTERNAL PARAMETER DESCRIPTION

I: :e: ~KX. <esc-iption of the ADS internal parameters is given.
"i, --, v f, it is somewhat mo-e detailed than p, - tC

-d in Cl :)1 )e t i ca.1  o-der(. f I is ii 7 that
';e Thanged iran its default v-alue, this t tated.

, --c d- .st f the algorithms contained in ADS, a:-d a, be
re'e--e- o for a noe deta i e d description of how a parameter is used in a ,iven

REAL ?PARAETERS CONTAINED IN WK

.XIXMD7 Used for ISTRAT = 5. Initial values for the Lagrange Multipliers for
the Augmented Lagrange Multiplier method. Applies to all constraints.
Usually the default values are adequate.

BRZ.AC - Used only with ISTRAT = 7. This provides an additional steepest
sncent move in the method of centers beyond the move to the center of tne

n'.'eLsphere. The basic method moves to the center of the hyoersphere

boended by the linear approximation to the current objective function and
constriants. In problems that are not too highly nonlinear, this may be

quite conservative. Using BETAMC, it is possible to move an additional
amount in a steepest descent direction in order to speed convergence. f

_ -eve is too far (it violates constriants) it -will be autmaticail) •

Ireduced, but at the expense of a function evaluation. The general concept
is shocwn in the figure below, where the intial move is to the center of
tno circle (a hypersphere in two-dimensional space is a circle). The
additional move is in the direction negative to the gradient of the

objective function. BETAMC = 1.0 will move to the edge of the circle. A
larger value is usually too optimistic, while a value of 0.5 will often be
about right.

EXTRA\R7

MOVE 6X /x-
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i
CT - Used with IOPT = 4 or 5. Also used with ISTRAT = 1-9 to a slightly

lessor degree. Constraint tolorance for nonlinear inequality constriants.
This parameter defines when a constraint is considered active, and is
perhaps the most important parameter for nonlinear constrained
optimization. i
One of the key issues in constrained optimization is determining when a
constraint is numerically "critical." If a constriant, G(I) is
numerically greater than CT, it is considered critical for purposes of
finding a new search direction or deciding if the optimum has been found.
This is also why constraint should be normalized to order of magnitude of
unity. Thus if G(I) is numerically greater than CT (say -0.03) then it is i
assumed to be within 3 percent of being critical. Numerically, this is

considered to be an "active" 'onstriant.
For highly nonlinear constraints, it is often helpful to make CT more
negative, say -0.10. By this method, the constraint is "trapped" sooner
and the optimization process will direct the design away from this
constraint. On the other hand, if the constriant is nearly linear, it may
help to make CT closer to zero, say -0.01. Then, when interpolating for
G(I) = 0, a more precise value of G(I) is obtained. In either case, the
value of CT is progressively reduced during optimization to a value of
-CTMIN, which is the value at which a constraint becomes strongly i
critical. In fact, if G(I) exceeds CTMIN (a positive) number, theconstriant is considered to be violated. See the definition of CTMIN.

For IOPT = 4 and 5, if a constriant repeatedly becomes active on one I
iteration and inactive on the next, CT should be increased in magnitude
(say try CT = -0.1 or -0.15), or the offending constraint should be
divided by a factor of ten to reduce its sensitivity.

Note that in ADS, equality constraints are converted to equivilant
inequality constriants. Therefore, the definitions of CT, CTMIN, CTL and
CTLMIN apply to equality constraints as well.

CTMIN - Used with IOPT = 4 or 5. Also used with ISTRAT = 1-9 to a slightly
lessor degree. Constraint tolorance defining when nonlinear inequality
constriants are violated. CTMIN is a positive number. A constraint is
considered inactive if its value is more negative than CT and active if
its value is between CT and CTMIN. If the constraint value is more I
positive than CTMIN, it is considered violated. This is perhaps the
second most important parameter for nonlinear constrained optimization.

Since, mathematically, an inequality constriant if violated any time its i
value is greater than zero, there may be a temptation to set CTMIN = 0.
However, this should not be done because the optimization algorithms

interpolate on zero and some numerical bandwidth should be provided to
allow for numerical inaccuracies. The default value allows for about a
half of a percent constriant violation for normalized constraints.

The geometric relationship between a constraint, G, and the parameters CT
and CTMIN is shown in the following figure.

i
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3, .7'; These parameters have t! e same definition as CT and CTMIN, but for

... : _ ",ly linear constraints. Because numerical interpolation is more
;,:ecise for linear constraints, these values are smaller in magnitude than

CT and CTMIN. CTL is reduced during the optimization process to a
7a-.nitude approaching CTLMIN, but opposite in sign.

Caution: Do not define a constraint as linear unless you are absolutely
sure it is. If a linear constraint is treated as nonlinear, efficiency is
only slightly reduced, but if a nonlinear constraint is treated as linear,
the result may be non-convergence.

DABAL? - Used in IONED = 1 and 5. Convergence criteria in the Golden Section
method for the one-dimensional search. If IONED = 2 or 6, a larger value
is used (by a factor of 100), since the Golden Section search will be
followed by a cubic polynomial interpolation using the final four points.

If it is desired to find a very precise solution to the one-dimensional

search, DABALP can be reduced. Alternatively, a larger value ;ill give a
less precise answer. It is normally not desired to change DABALP. The

default value gives high precision on the assumption that function values

are cheap, or else the Golden Section method would not be used.

DABOBJ - Used in all IOPT options. Absolute convergence criteria for
optimization. If the objective function is changed by less than this
value for ITRMOP iterations, the optimization will terminate. If the

objective function changes by more than one order of magnitude during

optimization, the default value for DABOBJ will probably cause premature

convergence. In this case, it is usually desirable to set DABOBJ to a

small number, say 0.001, and let the optimization process converge based
on the relative change criteria defined by DELOBJ.

DABOBM - Used with all strategies. This is the value of DABOBJ used during the
optimization sub-problem and is larger than DABOBJ. The reason for this
relaxed convergence criteria is that the optimizer will be called

repeatedly by the strategy. Therefore, the solution of the sub-problem
during the early stages is not as critical as if a strategy is not used.

The rules for changing DABOBJ apply here also.
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I
DABSTR - Used with all strategies. This is the overall absolute convergenfe

criteria. If the objective function is changed by less than this valul2e ! ,!
ITRMST iterations by the strategy, the optimization will terminate. ThiI
has the same general meaning as DABOBJ and the same rules apply.

DELALP, DELOBJ, DELOBM, DELSTR - These parameters are used w here thei I
counterparts DABxxx are used above. However, here the convergence ic
tested on the relative change in the objective function. The combination
DABxxx and DELxxx work together to form the diminishing r'tlirns

convergence criteria in ADS. Here by relative change we mean the
fractional change in the value of the objective function betveen
successive iterations.

If the objective function is quite small in magnitude, a relative change.

of say one percent, may not be meaningful and so the absolute criteria are
relied on to detect convergence. On the other hand, for large values of I
the objective function, the absolute change is considered of lessor
importance and the relative criteria tend to control the optimizatinn
convergence.

DLOBJ1 - Used in all one-dimensional searches. On the first search, it is

difficult to estimate a desirable move parameter, ALPHA, because the
optimization process has no history. DLOBJ1 is used to estimate the ALPHA I
which will reduce the objective function by this ftaction, based on a

linear approximation to the problem. Thus, for DLOBJI = 0.1, the first

step in the one-dimensional search will attempt to reduce the objective bv..

ten percent.

If the problem is highly nonlinear, so that the calculated ALPHA is

consistantly less than the proposed ALPHA, efficiency will be improved by
reducing DLOBJ1. Alternatively, if the calculated ALPHA is consista-tly
greater than the proposed ALPHA, it is desirable to increase DLOBJI.

DLOBJ2 - Used in all one-dimensional searches. If the objective function is

quite large in magnitude, a move to reduce the objective by the fraction
DLOBJ1 may be too large. In this case, DLOBJ2 is used to limit the change

in the objective function to the magnitude of DLOBJ2. In other wo-ds.
DL.OBJ1 is a fractional change and DLOBJ2 is an absolute change. As with
DLOBJl, if the proposed moves are too large, DLOBJ2 may be reduced and if

they are too small, DLOBJ2 may be increased.

Both DLOBJI and DLOBJ2 are updated during the optimization process by
keeping track of progress. Therefore, their initial values are usually

not too critical except for highly nonlinear problems where no progress
can be made due to very large estimates for ALPHA.

DXI, DX2 - Used in all one-dimensional searches. These parameters have an

equivilant meaning to DLOBJ1 and DLOBJ2, but here are applied to each

component of the X vector. The same general rules apply. The purpose of
DXl and DX2 is to prevent very large initial changes in the components of
the X vector. DXI and DX2 are also updated during the optimization
process.

I
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3 and . Initial transitiPn point from interior to
,.'a'. a fnction. PEN is a small negative number, and is
-B :: t 1!1';, nptimization. If significant constraint violations are

":e v<i t: tme initial stages, this should be made more negative. The
. if the design is feasible, a penalty is imposed for

,:1 .I t:- ropotional to one over the const-rant value as the
.p:- <~ th e feasible boundaL-y (G approaches zero from the

.- e.n a G EPSPEN, the form of the constriant penalty
a 1- (ISTRAT 2), quadratic (ISTRAT 2) or cubic (ISTFAT

i . c constraint.

and 8. The maximum polynomial ex ta po at r d
n a 1 search routines do not require that ,ou'.

. h in im of the function, put nrtRad ex trapo t 'or Ine

c.:se ext-apolation is relativey uireliabe, i ed

-:.. - of. extrapolation. If the olject"e an c - ai.nts

..... . .,f the ob e ive 2:- .. a," s.

londi t ned and EXTP'.. 'ode edce c,-

::.... ... .... . ......... to '':: 'Z0T[qD -- 2] rr n.~ ia '

inrnal gradient 1xc1 tirr:.s c '
forward finite diffe-ence un1 es a var-'e ts at
,is cae, a first bacbk a-ds fini r d ff C. e C,-, sten

P') "I e k is made to insure that the -esuIr4-4; desi. v iable

Sr ond. FDCii is the finite diff erence e'p siLe as aI * *-i-- [ hedsgn variable being pert'irbed. f 1igh p 2e-i on is
v,'a ae d required in evaluating the objective an ocr r tra ,n t
n s , nhs should be reduced. If the analysis is iterati'e, v"th its

ovn internal convergence parameters, FDCH may have to be increase'. For
iterative analysis, a value of FDCH up to 0.05 may be appropriatc for
constrained problems, but FDCH = 0.02 is a more reasonable licrt for
:nconstrained problems. The reason for this is that ADS seeks the point
"-nere the gradient is zero for unconstrained problems, and if FCH is

arge, this is numerically difficult and will lead to false gradient
formation. On the other hand, for constrained problems, the gradients

of the objective and critical constraints are usually non-zero at the
cntuin- and so precision in their calculation is not as important.

.'.D = 0 for internal gradient calculations by ADS. This is
" absolute steplength for gradient calculations. This is used

...... . .. .r -'o-ponent of X is near zero since a fractional change ma' not be
.T -.he rame general rules apply as with FDCH.

.U IS'RAT : 8. Initial penalty parameter. If the design stays
'ell inside the feasible region, this can be reduced. If the design moves
".well outside the feasible region, this should be increased.

PXiT - Penalty multiplier for equality constriants. ADS treats equality
'-,nstraints by adding a linear multiplier times the constriant values to
the objective and then treating the constraint as an inequality. If the
-quality constriants are not sufficiently close to zero at the optimum,
inucrease PMLT. If convergence is very slow because the optimization is
trying to follow this constriant too closely, decrease PHLT.
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I
PSIAZ - Used with ISTRAT = 8. Used to avoid constraint violations. This has

little effect because of algorithmic modifications made to ADS and the i
fact that the ADS optimizers can deal well with constriant violations.

RMULT - Used with ISTRAT - 1 and ISTRAT = 2-5 for equality constraints.

Penalty factor multiplier for the exterior penalty function method. If
the strategy iterations progress slowly from far outside the feasible
region, RMULT should be increased. If the design seems to become near
feasible quickly, but then converge poorly, RMULT should be decreased. I
RMULT should never be less than about I.I.

RMVLMZ - Used with strategies 6 through 9. Initial relative move limits. If
the design variables alternately go from + to - the move limits, this
should be reduced. If the design variables repeatedly hit one side (upper
or lower limit), this should be increased. Also increase RMVLMZ is the
problem is known to be nearly linear or if the optimum is always fully i
constrained (has as many active constriants as there are design
variables).

RP - Used with ISTRAT = 1 and 5 and for ISTRAT = 2, 3 and 4 for equality
constraints. Initial penalty parameter for the exterior penalty function
method and the Augmented Lagrange Multiplier Method and for equality
constraints for exterior and extended interior penalty function methods.. I
If the optimum of the first unconstrained sub-problem is wll outside the

feasible region, increase RP. If the optimum of the first unconstrained

sup-problem is feasible or very near feasible for ISTRAT z 1, reduce RP.

IRPMAX - Used with ISTRAT = 1 and 5 and for ISTRAT = 2, 3 and 4 for equality

constraints. Maximum value of RP to be used. If optimum is significantly
outside the feasible region, increase RPMAX. If constraints are satisfied
much more precisely at the optimum than required, reduce RPMAX.

RPMULT - Used with ISTRAT = 2, 3 and 4. Multiplier on RPPRIM for consecutive

iterations. Increase if convergence is very slow but reliable. Decrease
if convergence is far from (expected) optimum.

RPPMIN - Used with ISTRAT = 2, 3 and 4. Minimum value of RPPRIM to be used. If i
optimum is well inside the feasible region, reduce. If constraints are
more precisely satisfied than required, increase.

RPPRIM - Used with ISTRAT = 2, 3 and 4. Initial penalty parameter for extended
penalty function methods. If the result of the first unconstrained
sub-problem is well inside the feasible region, reduce. If the result i: a

right at the constraint boundaries, increase. RPPRIM is reduced on each
iteration by a factor RPMULT.

STOL - Used by all optimizers. Tolorance on the components of the search I
direction to indicate convergence by the Kuhn Tucker conditions. The
Kuhn-Tucker conditions are the mathematical conditions that are satisfied

at a precise optimum. These cannot generally be used as the only i
convergence criteria since this is numerically difficult to achieve.
However, when the Kuhn-Tucker -onditions are met, it is used as a
convergence criterion which supercedes all others. Reducing STOL imposes

a more stringent convergence criterion.
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I t b2 changed i f7 ( P"

:. thIne , -1a "push if actor for the method of fe s ibS e
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,. Loran- - a .;, THE .. t cons Iraints a ghI S S ru.Il prefei erale to increase the magnitude of f (make

r7 t -egat ive)

-O Numerical zero' to indicate reasonable machine accuracy. Primarily

used internally, by ADS to prevent floating point divide or indicate that

the numerical zero of a function has been found. Normally should not beI =changed.

NTEER PARAMETERS CONTAINED IN IWK

ICNDIR Used oy all optimizers. Conjugate direction or variable metric restart

parameter to restart with a steepest descent direction ift'e '::ccti,'e is
1currently unconstrained (no constrains are active or .)i ICat< . The

default is usually adequate. If no progress is being -e :.- ,'ill

autcmatically over-ride ICNDIR and restart vitba teei, " iesrent3 e ir t i on.

4 vs a "orthwhile exercise to solve an unconstrained pr e- "t ICNDIR
ih This will use a steepest descent direction on e".-.- iteta'xcn. This

"5 the classical steepest descent method and a compariso:, o tii oft ith theI: n: nnstrained minimization methods in ADS .;ill ndicate the power of

methods.

I ISCAL - Turns automatic scaling on/off. If the problem has been carefully
scaled, set ISCAL = 0. Also, in general, if the optimization progress is
slo, it is worthwhile to try ISCAL = 0 to see if the automatic scaling in
ADS is actually causing some ill-conditioning. The present scaling

routine in ADS is much improved from the original one and so should not
cause difficulty.

I ITMAX - Maximum number of iterations in the optimizer. If function evaluations
are extremely expensive, reduce ITMAX. In the extreme case ITMAX = 1 or 2

12 'ustified because the first few iterations are where most progress is

7 ade. If function evaluations are not expensive and the optimization
ti-,.'inates by reaching ITMAX, it should be increased. When using a

' 'atgy, ITMAX should be at least 10 to insure reasonable solution of the
hbproblem. When using ISTRAT = 6, 7 or 9, ITMAX should not be reducedI -- use the optimizer is only solving a simple and inexpensive approximate

oblem. In these cases, the optimizer does not call for detailed

:,,r-tion evaluations.

31 v all op imizers. The number of consecutive iterations that must

he absolute or relative convergence criteria before optimization
• i;,_ted. Usually ITRMOP should be at least 2 because it is common

s-,ake "ittle progress on one iteration, only to make major progress on
t:e next. Therefore, ITRMOP = 2 will allow a second try before
ucminating.
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i
ITRMST - Used by all strategies. The number of consecutive sub-optimizations

that must satisfy the absolute or relative strategy convergence criteria

before optimization is terminated. The same rules apply as to ITRMOP,
except ITRMST = 1 may be used. This is because, the sub-problem cannot
make progress, and therefore solving an additional sub-optimization

problem will probably not help.

JONED - Used with ISTRAT = 8. This strategy performs an additional

one-dimensional search. Normally the one-dimensional search defined by
IONED is used. If a different one is desired, it is defined by JONED.
Sometimes efficiency or reliability can be improved by using IONED = 5 Cr
6 and JONED = 7. This is because the optimization sub-problem does not
call for detailed function evaluations and so can use a less efficient,
but more precise one-dimensional search.

JTMAX - Maximum number of strategy iterations to be allowed. Reduce if

optimization is very expensive. Increase if optimization is stopped by
reaching the maximum number of strategy iterations and function

evaluations are cheap.

i
i
I
I
i
i
I
I
I
i
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